Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Magnetism and Superconductivity in $CeCu_2(Si_{1-x}Ge_x)_2$ Probed by Cu NOR

Y. Kawasaki¹, K. Ishida¹, K. Obinata¹, K. Tabuchi¹, K. Kashima¹, T. Mito¹, G. -q. Zheng¹, Y. Kitaoka¹, C. Geibel², F. Steglich²

- ¹ Department of Physical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- ² Max-Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany

We report Cu-NQR results on Ge-doped heavy-fermion superconductor $\text{CeCu}_2(\text{Si}_{1-x}\text{Ge}_x)_2$ ($0 < x \le 0.2$) and undoped CeCu_2Si_2 . The main effect of the Ge doping is considered to be a negative pressure, since the strength of hybridization between f and conduction electrons decreases with the Ge doping. We observed the broadening of the Cu-NQR spectra originating from an internal field at the Cu site, and a distinct hump in $1/T_1$ at T_N even in the slightly doped sample with x=0.01. With increasing Ge concentration, T_N increases and T_c decreases from the same temperature of 0.65 K, implying that the magnetic and the superconducting phases are almost degenerate in pure CeCu_2Si_2 . Correspondingly, the dynamical characteristics of the magnetic order at x=0 change to more static ones, that results in a localized regime of f electrons above $x\sim0.25$. In the region of small x, we propose the low-energy magnetic fluctuations and superconductivity coexist in a microscopic view. The pressure effect on $\text{CeCu}(\text{Si}_{0.98}\text{Ge}_{0.02})_2$ is also reported, where the magnetic anomaly is suppressed by a small pressure.